我学PDE的第一步——恶补薄弱的数分Ⅲ

本文最后更新于 2024年9月29日 下午

B 站链接:西工大-马啸-姜礼尚《数学物理方程讲义》
马老师的课件在视频简介中

基础知识回顾

场论

梯度

定义

uu 是数量函数,则梯度

grad u=u=(ux,uy,uz)\begin{equation*} \text{grad }u = \nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) \end{equation*}

其中,定义算子:

=(x,y,z)\begin{equation*} \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \end{equation*}

性质

  1. u,vu, v 是数量函数, 则

(u+v)=u+v(uv)=uv+vu(u2)=2u(u).\begin{align*} \nabla(u + v) &= \nabla u + \nabla v \\ \nabla(u \cdot v) &= u \nabla v + v \nabla u \\ \nabla(u^2) &= 2u(\nabla u). \end{align*}

  1. r=(x,y,z),ϕ=ϕ(x,y,z)\vec{r} = (x, y, z), \phi = \phi(x, y, z), 则

dϕ=ϕxdx+ϕydy+ϕzdz=(ϕx,ϕy,ϕz)(dx,dy,dz)=drϕ.\begin{align*} \mathrm{d}\phi & = \phi_x \mathrm{d}x + \phi_y \mathrm{d}y + \phi_z \mathrm{d}z \\ & = (\phi_x, \phi_y, \phi_z) \cdot (\mathrm{d}x, \mathrm{d}y, \mathrm{d}z) \\ & = \mathrm{d}\vec{r} \cdot \nabla\phi. \end{align*}

  1. f=f(u),u=u(x,y,z)f = f(u), u = u(x, y, z), 则

f=(fx,fy,fz)=(fuux,fuuy,fuuz)=fu()=f(u)u.\begin{align*} \nabla f & = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = (\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}, \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial z}) \\ & = \frac{\partial f}{\partial u} () \\ & = f'(u)\nabla u. \end{align*}

散度

定义

A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))\vec{A}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) 为空间区域 VV 上的向量函数, 对于 VV 上任意点 (x,y,z)(x, y, z), 定义散度为:

div f=f=fxx+fyy+fzz\begin{equation*} \text{div }f = \nabla \cdot f = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} \end{equation*}

n=(cosα,cosβ,cosγ)\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma) 为曲面的单位法向量, 则 dS=ndS\mathrm{d}\vec{S} = \vec{n}\, \mathrm{d}S 称为面积元素向量,则
Gauss 公式可以写成如下形式:

VAdV=SAdS\begin{equation*} \iiint_V \nabla \cdot \vec{A}\, \mathrm{d}V = \iint_S \vec{A} \cdot \mathrm{d}\vec{S} \end{equation*}

性质

  1. u,vu, v 是向量函数, 则:

(u+v)=u+v\begin{align*} \nabla \cdot (u + v) = \nabla \cdot u + \nabla \cdot v \end{align*}

  1. ϕ\phi 是数量函数, FF 是向量函数, 则

(ϕF)=ϕF+Fϕ\begin{align*} \nabla \cdot (\phi F) = \phi \nabla \cdot F + F \cdot \nabla \phi \end{align*}

  1. ϕ=ϕ(x,y,z)\phi = \phi(x, y, z) 是一数量函数, 则

ϕ=2ϕx2+2ϕy2+2ϕz2=Δϕ\begin{align*} \nabla \cdot \nabla \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \Delta \phi \end{align*}

旋度

定义

A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))\vec{A}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) 为空间区域 VV 上的向量函数, 对于 VV 上任意点 (x,y,z)(x, y, z), 定义旋度为:

rotA=(RyQz,PzRx,QxPy)=ijkxyzPQR=×A\begin{align*} \text{rot} \vec{A} &= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \\ & = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \nabla \times \vec{A} \end{align*}

Green 公式

P(x,y),Q(x,y)C1(Ω)C2(Ω)P(x, y), Q(x, y) \in C^1(\Omega) \cap C^2(\Omega), 则:

ΩxyPQdxdy=ΩPdx+Qdy\begin{align*} \iint\limits_\Omega \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} \mathrm{d} x \mathrm{d} y = \int\limits_{\partial\Omega} P\mathrm{d}x + Q\mathrm{d}y \\ \end{align*}

或者由 dx=cos(n,y)dS,dy=cos(n,x)dS\mathrm{d}x = -\cos(\vec{n}, y)\mathrm{d}S, \mathrm{d}y = \cos(\vec{n}, x)\mathrm{d}S,有:

Ω(Qx+Py)dxdy=ΩQcos(n,x)+Pcos(n,y)dS\begin{align*} \iint\limits_\Omega \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y = \int\limits_{\partial\Omega} Q\cos(n, x) + P\cos(n, y)\mathrm{d}S \end{align*}

P,Q,RC1(V),S=VP, Q, R \in C^1(V), S = \partial V,则:

V(Px+Qy+Rz)dxdydz=Pdydz+Qdxdz+Rdxdy\begin{align*} \iiint\limits_V \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) \mathrm{d}x\mathrm{d}y\mathrm{d}z = \iint P\mathrm{d}y\mathrm{d}z + \iint Q\mathrm{d}x\mathrm{d}z + \iint R\mathrm{d}x\mathrm{d}y \end{align*}

Gauss 公式

Gauss 公式可写为如下向量形式:

VdivAdV=VAdS=VAndS\begin{align*} \iiint\limits_V \text{div} \vec{A} \mathrm{d}V = \iint\limits_{\partial V} \vec{A} \cdot \mathrm{d}\vec{S} = \iint\limits_{\partial V} \vec{A} \cdot \vec{n} \mathrm{d}S \end{align*}

其中,n=(cos(n,x),cos(n,y),cos(n,z))\vec{n} = (\cos(n, x), \cos(n, y), \cos(n, z))

Gauss 公式常用变体

1. 取 A=u\vec{A} = \nabla u

VΔudV=VudS=VudndS=SundS\begin{align*} \iiint\limits_V \Delta u \mathrm{d}V = \iint\limits_{\partial V} \nabla u \cdot \mathrm{d}\vec{S} = \iint\limits_{\partial V} \nabla u \cdot \mathrm{d}\vec{n}\mathrm{d}S = \iint\limits_S \frac{\partial u}{\partial n} \mathrm{d}S \end{align*}

2. 格林第一公式

  • A=uv\vec{A} = u \nabla v

VuΔvdV=VuvndSVuvdV\begin{align*} \iiint\limits_V u \Delta v \mathrm{d}V = \iint\limits_{\partial V} u\frac{\partial\vec{v}}{\partial n}\mathrm{d}S - \iiint\limits_V \nabla u\cdot \nabla v \mathrm{d}V \end{align*}

  • 同理,取 A=uv\vec{A} = u \nabla v 可得,

VvΔudV=VvundSVuvdV\begin{align*} \iiint\limits_V v \Delta u\mathrm{d}V = \iint\limits_{\partial V} v \frac{\partial\vec{u}}{\partial n}\mathrm{d}S - \iiint\limits_V \nabla u \cdot \nabla v\mathrm{d}V \end{align*}

3. 格林第二公式

将格林第一公式的上下两式相减即得:

VvΔuuΔvdV=VvunuvndS\begin{align*} \iiint\limits_V v\Delta u - u\Delta v \mathrm{d}V &= \iint\limits_{\partial V} v\frac{\partial u}{\partial n} - u\frac{\partial v}{\partial n}\mathrm{d}S \end{align*}

Stokes 公式

旋度定理

SS 是分片光滑的有向曲面,SS 的边界为有向闭曲线 Γ\Gamma,即 Γ=S\Gamma = \partial S,且 dS\mathrm{d} \vec{S} 的正向与 SS 的正向一致。设函数 P(x,y,z)P(x, y, z), Q(x,y,z)Q(x, y, z), R(x,y,z)R(x, y, z) 都是定义在 曲面 SS 连同其边界 Γ\Gamma 上且都具有一阶连续偏导数的函数,则有:

S(RyQz)dydz+(PzRx)dzdx+(QxPy)dxdy=ΓPdx+Qdy+Rdz\begin{align*} \iint\limits_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathrm{d}y\mathrm{d}z + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathrm{d}z\mathrm{d}x + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y &= \oint\limits_\Gamma P\mathrm{d}x + Q\mathrm{d}y + R\mathrm{d}z \end{align*}

可以形式化地写成:

ScosαcosβcosγxyzPQRdS=SijkxyzPQRdS=ΓPdx+Qdy+Rdz\begin{align*} \iint\limits_S \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}\mathrm{d}S = \iint\limits_S \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}\mathrm{d}S = \oint\limits_\Gamma P\mathrm{d}x + Q\mathrm{d}y + R\mathrm{d}z \end{align*}

用微分算符可写成:

S×FdS=SFdr\begin{align*} \iint\limits_S \nabla \times \vec{F} \cdot \mathrm{d}\vec{S} = \oint\limits_{\partial S} \vec{F} \cdot \mathrm{d}\vec{r} \end{align*}


PDE-Note-01
http://dbqdss.github.io/2024/08/06/PDE/PDE-Note-01/
作者
DBQDSS
发布于
2024年8月6日
许可协议