贾JX老师的第一次PDE作业

本文最后更新于 2024年9月29日 下午

第一题

第一题

证明:

(1)

Ωuxivdx=Ωuvxidx+Ωxi(uv)dx=Ωuvxidx+ΩuvnidS\begin{align*} \int_{\Omega}u_{x_{i}}v dx &= -\int_{\Omega} u\cdot v_{x_{i}} dx + \int_{\Omega}\nabla_{x_{i}}(uv) dx \\ &= -\int_{\Omega} u\cdot v_{x_{i}} dx + \int_{\partial\Omega}uv\cdot\vec{n}_{i} dS \end{align*}

(2)

ΩΔudx=Ω(u)dx=ΩundS=ΩundS\begin{align*} \int_{\Omega}\Delta u dx=&\int_{\Omega} \nabla \cdot(\nabla u) dx=\int_{\partial\Omega}\nabla u\cdot\vec{n} dS \\ =&\int_{\partial\Omega}\frac{\partial u}{\partial\overrightarrow{n}} dS \end{align*}

(3)

Ωuvdx=ΩuΔvdx+Ω(uv)dx=ΩuΔvdx+ΩuvndS=ΩuΔvdx+ΩuvndS\begin{align*} \int_{\Omega}\nabla u\cdot\nabla v dx = & - \int_{\Omega} u\Delta v dx + \int_{\Omega}\nabla\left(u\cdot\nabla v\right)dx \\ =& - \int_{\Omega} u\Delta v dx + \int_{\partial\Omega}u \nabla v\cdot\vec{n} dS \\ =& - \int_{\Omega} u\Delta v dx + \int_{\partial\Omega}u\frac{\partial v}{\partial\overrightarrow{n}}dS \end{align*}

(4)

ΩuΔvvΔudx=ΩuΔvdxΩvΔudx=(ΩuvndSΩuvdx)(ΩvundSΩuvdx)=Ω(uVnvUn)dS\begin{align*} \int_{\Omega}u\Delta v-v\Delta u dx=&\int_{\Omega}u\Delta v dx-\int_{\Omega}v\Delta u dx \\ =&\left(\int_{\partial\Omega}u\frac{\partial v}{\partial\overrightarrow{n}}dS-\int_{\Omega}\nabla u\cdot \nabla v dx\right)-\left(\int_{\partial\Omega}v \frac{\partial u}{\partial\overrightarrow{n}}dS-\int_{\Omega}\nabla u\cdot\nabla v dx\right) \\ =&\int_{\partial\Omega}\left(u\frac{\partial V}{\partial\vec{n}}-v \frac{\partial U}{\partial\vec{n}}\right)dS \end{align*}

第二题

T12

T12

法1

(Fzk同学先教会了我T13的解法,我仿照T13的思路凑出了这个解法)

解: 由分部积分,

01(2x+1)ydx+012ydx=(2x+1)y01=3y(1)y(0)=y(0)\begin{equation*} \int_{0}^{1}(2x+1)y^{\prime}dx+\int_{0}^{1}2ydx=(2x+1)y|_{0}^{1}=3\cdot y(1)-y(0) = -y(0) \end{equation*}

可得,

012ydx=y(0)+01(2x+1)ydx\begin{equation*} -\int_{0}^{1}2ydx=y(0)+\int_{0}^{1}(2x+1)y^{\prime}dx \end{equation*}

代入得,

J(y)=1201(y)2dx201ydxy(0)=1201(y)2dx+01(2x+1)ydx+1201(2x+1)2dx1201(2x+1)2dx=1201(y+(2x+1))2dx136136\begin{align*} J(y)&=\frac{1}{2}\int_{0}^{1}(y^{\prime})^{2}dx-2\int_{0}^{1}ydx-y(0)\\ &=\frac{1}{2}\int_{0}^{1}(y^{\prime})^{2}dx+\int_{0}^{1}(2x+1)y^{\prime}dx+\frac{1}{2}\int_{0}^{1}(2x+1)^{2}dx -\frac{1}{2}\int_{0}^{1}(2x+1)^{2}dx\\ &=\frac{1}{2}\int_{0}^{1}(y^{\prime}+(2x+1))^{2}dx-\frac{13}{6} \\ &\geq-\frac{13}{6} \end{align*}

于是,

等号成立{y=2x1y(1)=0,x[0,1]{y=x2x+c11+c=0u=x2x+2\begin{equation*} \text{等号成立} \Leftrightarrow \begin{cases} y^{\prime}=-2x-1\\ y(1)=0 \end{cases}, \forall x \in [0,1] \Leftrightarrow \begin{cases} y=-x^{2}-x+c\\ -1-1+c=0 \end{cases} \Leftrightarrow u = -x^{2}-x+2 \end{equation*}

法2

(解法 from Yjy同学)

T12-1
T12-2
T12-3

T13

T12

法1

(解法 from Fzk同学)

解:
首先,有分部积分,

01yydx=12y201=12[y2(1)y2(0)]\begin{equation*} \int_{0}^{1}y y^{\prime} dx=\frac{1}{2} y^{2} |_{0}^{1} = \frac{1}{2} [y^{2}(1)-y^{2}(0)] \end{equation*}

代入得,

J(y)=1201(y2+y2)dx+12[y2(0)+y2(1)]2y(0)=1201(y+y)22yydx+12[y2(0)+y2(1)]2y(0)=1201(y+y)2dx01yydx+12[y2(0)+y2(1)]2y(0)=1201(y+y)2dx+y2(0)2y(0)=1201(y+y)2dx+(y(0)1)2+11\begin{align*} J(y)&=\frac{1}{2}\int_{0}^{1}(y^{2}+y^{2}) dx+\frac{1}{2}[y^{2}(0)+y^{2}(1)]-2y(0)\\ &=\frac{1}{2}\int_{0}^{1}(y+y^{\prime})^{2}-2yy^{\prime} dx+\frac{1}{2}[y^{2}(0)+y^{2}(1)]-2y(0)\\ &=\frac{1}{2}\int_{0}^{1}(y+y^{\prime})^{2} dx-\int_{0}^{1}yy^{\prime}dx+\frac{1}{2}[y^{2}(0)+y^{2}(1)]-2y(0)\\ &=\frac{1}{2}\int_{0}^{1}(y+y^{\prime})^{2}dx+y^{2}(0)-2y(0)\\ &=\frac{1}{2}\int_{0}^{1}(y+y^{\prime})^{2}dx+(y(0)-1)^{2}+1\\ &\geq 1 \end{align*}

于是有,

等号成立{y+y=0y(0)=1,x[0,1]{u+u=0u(0)=1u=ex\begin{equation*} \text{等号成立} \Leftrightarrow \begin{cases} y + y^{\prime}=0 \\ y(0)=1 \end{cases}, \forall x \in [0,1] \Leftrightarrow \left.\left\{ \begin{array}{l} {u^{\prime}+u=0}\\ {u(0)=1}\\ \end{array} \right.\right. \Leftrightarrow u=e^{-x} \end{equation*}

法2

(解法 from Yjy同学)

T13

T14

T14

第一问

证明:

j(ϵ)=J(u+ϵv),vM.\begin{equation*} j(\epsilon)=J(u+\epsilon v), \quad v\in M. \end{equation*}

则有,

j(ϵ)=J(u+ϵv)=12Ω((u+ϵv)2+(u+ϵv)2)dx+12Ωα(x)(u+ϵv)2dsΩf(u+ϵv)dxΩg(u+ϵv)ds=12Ω(u2+ϵ2v2+2ϵuv+u2+2ϵuv+v2)dx+12Ωα(x)(u2+2ϵuv+ϵ2v2)dsΩf(u+ϵv)dxΩg(u+ϵv)ds\begin{align*} j(\epsilon)=&J(u+\epsilon v) \\ =&\frac{1}{2}\int_{\Omega}\left(\left|\nabla(u+\epsilon v)\right|^{2}+\left(u+\epsilon v\right)^{2}\right)dx+\frac{1}{2}\int_{\partial\Omega}\alpha(x)\cdot\left(u+\epsilon v\right)^{2}ds\\ &-\int_{\Omega}f(u+\epsilon v)dx-\int_{\partial\Omega}g(u+\epsilon v)ds\\ =&\frac{1}{2}\int_{\Omega}\left(|\nabla u|^{2}+\epsilon^{2}|\nabla v|^{2}+2\epsilon\cdot\nabla u\cdot\nabla v+u^{2}+2\epsilon uv+v^{2}\right)dx\\ &+\frac{1}{2}\int_{\partial\Omega}\alpha(x)\left(u^{2}+2\epsilon\cdot uv+\epsilon^{2}v^{2}\right)ds-\int_{\Omega}f(u+\epsilon v)dx-\int_{\partial\Omega}g(u+\epsilon v)ds \end{align*}

ϵ\epsilon 求导,可得,

j(ϵ)=Ω(ϵv2+uv+uv)dx+Ωα(x)(uv+ϵv2)dsΩfvdxΩgvds\begin{align*} j^{\prime}(\epsilon)=&\int_{\Omega}\left(\epsilon|\nabla v|^{2}+\nabla u\cdot\nabla v +uv\right)dx+\int_{\partial\Omega}\alpha(x)\left(uv+\epsilon v^{2}\right)ds\\ &-\int_{\Omega}fv dx-\int_{\partial\Omega}gv ds \end{align*}

于是,

问题1j(0)=0Ω(uv+uvfv)dx+Ω(α(x)uvgv)ds=0,vM问题2\begin{align*} \text{问题1} &\Leftrightarrow j^{\prime}(0)=0 \\ &\Leftrightarrow \int_{\Omega}\left(\nabla u\cdot\nabla v+uv-fv\right)dx+\int_{\partial\Omega}(\alpha(x)uv-gv)ds=0 , \forall v\in M \\ &\Leftrightarrow \text{问题2} \end{align*}

第二问

证明: 从第一问可得:问题1问题2\text{问题1} \Leftrightarrow \text{问题2}

于是只需证:
问题2问题3\text{问题2} \Leftrightarrow \text{问题3}

uC2(Ω)C1(Ω)u \in C^2(\Omega) \cup C^1(\overline{\Omega}),使用分部积分以及 Gauss-Green 公式,

Ω(uv+vΔu)dx=Ω(vu)dx=ΩvundsΩuvdx=ΩvundsΩvΔudx\begin{align*} &\int_{\Omega}\left(\nabla u\cdot\nabla v+v\cdot\Delta u\right)dx=\int_{\Omega}\nabla\left(v\cdot\nabla u\right)dx=\int_{\partial\Omega}v\cdot\nabla u\cdot\vec{n} ds \\ \Rightarrow &\int_{\Omega}\nabla u\cdot\nabla v dx=\int_{\partial\Omega}v\frac{\partial u}{\partial\vec{n}} ds-\int_{\Omega}v\Delta u dx \end{align*}

于是,

问题2Ω(uv+uvfv)dx+Ω(α(x)uvgv)ds=0,vM.Ω(uΔuf)vdx+Ω(un+α(x)ug)vds,vM.{Δu+u=f,xΩun+α(x)u=g,xΩ问题3\begin{align*} \text{问题2}&\Leftrightarrow \int_{\Omega}\left(\nabla u\cdot\nabla v+uv-fv\right)dx+\int_{\partial\Omega}\left(\alpha(x)uv-gv\right)ds=0 , \forall v\in M .\\ &\Leftrightarrow \int_{\Omega}\left(u-\Delta u-f\right)v dx+\int_{\partial\Omega}\left(\frac{\partial u}{\partial \vec{n}}+\alpha(x)u-g\right)v ds , \forall v\in M .\\ &\Leftrightarrow \begin{cases} -\Delta u+u=f&, \forall x\in\Omega\\ \frac{\partial u}{\partial \vec{n}}+\alpha(x)u=g &, \forall x\in\partial\Omega \end{cases} \\ &\Leftrightarrow\text{问题3} \end{align*}

第三题

T16

T16

第一问

证明:

ut=uξξt+uηηt=uξ(α)+uη(α)\begin{equation*} \frac{\partial u}{\partial t}=\frac{\partial u}{\partial\xi}\cdot\frac{\partial\xi}{\partial t}+\frac{\partial u}{\partial\eta}\cdot\frac{\partial\eta}{\partial t}=\frac{\partial u}{\partial \xi}(-\alpha)+\frac{\partial u}{\partial \eta}(\alpha) \end{equation*}

有,

2ut2=t(auξ+auη)=(a)(2uξ2ξt+2uηξηt)+a(2uη2ηt+2uξηξt)=(a)[2uξ2(a)+2uηξ(a)]+a[2uη2(a)+2uξη(a)]=a2(2uξ222uηξ+2uη2)\begin{align*} \frac{\partial^2 u}{\partial t^{2}}&=\frac{\partial}{\partial t}\left(-a\frac{\partial u}{\partial\xi}+a\frac{\partial u}{\partial\eta}\right)\\ &=(-a)\left(\frac{\partial^2 u}{\partial\xi^{2}}\frac{\partial\xi}{\partial t}+\frac{\partial^2 u}{\partial\eta\partial\xi}\frac{\partial\eta}{\partial t}\right)+a\left(\frac{\partial^2 u}{\partial\eta^{2}}\frac{\partial\eta}{\partial t}+\frac{\partial^2 u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial t}\right)\\ &=(-a)\left[\frac{\partial^2 u}{\partial\xi^{2}}(-a)+\frac{\partial^2 u}{\partial\eta\partial\xi}(a)\right]+a\left[\frac{\partial^2 u}{\partial\eta^{2}}(a)+\frac{\partial^2 u}{\partial\xi\partial\eta}(-a)\right]\\ &=a^2 \left(\frac{\partial^2 u}{\partial\xi^{2}}-2\frac{\partial^2 u}{\partial\eta\partial\xi}+\frac{\partial^2 u}{\partial\eta^{2}}\right) \end{align*}

2ux=2uξξx+2uηηx=uξ+uη\begin{equation*} \frac{\partial^2 u}{\partial x}=\frac{\partial^2 u}{\partial\xi}\cdot\frac{\partial\xi}{\partial x}+\frac{\partial^2 u}{\partial \eta}\cdot\frac{\partial\eta}{\partial x}=\frac{\partial u}{\partial\xi}+\frac{\partial u}{\partial\eta} \end{equation*}

2ux2=x(uξ+uη)=(2uξ2ξx+2uηξηx)+(2uη2ηx+2uηξξx)=2uξ2+22uηξ+2uη2\begin{align*} \frac{\partial^2 u}{\partial x^{2}}&=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial\xi}+\frac{\partial u}{\partial\eta}\right)\\ &=\left(\frac{\partial^2 u}{\partial\xi^{2}}\cdot\frac{\partial\xi}{\partial x}+\frac{\partial^2 u}{\partial\eta\partial\xi}\cdot\frac{\partial\eta}{\partial x}\right)+\left(\frac{\partial^2 u}{\partial\eta^{2}}\cdot\frac{\partial\eta}{\partial x}+\frac{\partial^2 u}{\partial\eta \partial \xi}\cdot\frac{\partial\xi}{\partial x}\right)\\ &=\frac{\partial^2 u}{\partial\xi^{2}}+2\frac{\partial^2 u}{\partial\eta\partial\xi}+\frac{\partial^2 u}{\partial\eta^{2}} \end{align*}

代入 utta2uxx=0u_{tt} - a^2 \cdot u_{xx} = 0,有:

a2(2uξ0222uηξ+2uη2)a2(2uξ2+22uηξ+2uη2)=02uηξ=0\begin{align*} a^2 \left(\frac{\partial^2 u}{\partial\xi_{0}^{2}}-2\frac{\partial^2 u}{\partial\eta\partial\xi}+\frac{\partial^2 u}{\partial\eta^{2}}\right)- a^{2}\left(\frac{\partial^2 u}{\partial\xi^{2}}+2\frac{\partial^2 u}{\partial\eta\partial\xi}+\frac{\partial^2 u}{\partial\eta^{2}}\right)=0 \Rightarrow\frac{\partial^2 u}{\partial\eta\partial\xi}=0 \end{align*}

于是可得通解,

2uηξdη=F1(ξ)u=F1(ξ)dξ+G(η)=F(ξ)+G(η)u(x,t)=F(xat)+G(x+at)\begin{align*} \int\frac{\partial^2 u}{\partial\eta\partial\xi}d\eta=F_{1}(\xi)&\Rightarrow u= \int F_{1}(\xi)d\xi+G(\eta)=F(\xi)+G(\eta)\\ &\Rightarrow u(x,t)=F(x-at)+G(x+at) \end{align*}

第二问

证明: 首先,

ut=uξξt+uττt=uξ(α)+uτux=uξξx+uττx=uξ2ux2=x(2uξ)=2uξ2ξx+2uτξτx=2uξ2\begin{align*} &\frac{\partial u}{\partial t}=\frac{\partial u}{\partial\xi}\cdot\frac{\partial\xi}{\partial t}+\frac{\partial u}{\partial\tau}\cdot\frac{\partial\tau}{\partial t}=\frac{\partial u}{\partial\xi}(-\alpha)+\frac{\partial u}{\partial\tau}\\ &\frac{\partial u}{\partial x}=\frac{\partial u}{\partial\xi}\cdot\frac{\partial\xi}{\partial x}+\frac{\partial u}{\partial\tau}\cdot\frac{\partial\tau}{\partial x}=\frac{\partial u}{\partial\xi}\\ &\frac{\partial^2 u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial^2 u}{\partial\xi}\right)=\frac{\partial^2 u}{\partial\xi^{2}}\cdot\frac{\partial\xi}{\partial x}+\frac{\partial^2 u}{\partial\tau\partial\xi}\cdot\frac{\partial\tau}{\partial x}=\frac{\partial^{2}u}{\partial\xi^{2}} \end{align*}

代入原式,

ut+αux=a2uxx(α)uξ+uτ+α(uξ)=a2uξξuτ=a2uξξ\begin{align*} u_{t}+\alpha u_{x}=a^2 u_{xx} \Leftrightarrow& (-\alpha) u_{\xi}+u_{\tau}+\alpha (u_{\xi} )=a^{2} u_{\xi\xi}\\ \Leftrightarrow& u_{\tau}= a^2 u_{\xi\xi} \end{align*}

T17

T17

证明: 首先,

u~xi=u~rrxi=u~xir2u~xi2=xi(u~xir)=r(u~xir)rxi=(u~xir+u~rrxixir2)xir=u~xi2r2+u~r2xi2r3\begin{align*} \frac{\partial\widetilde{u}}{\partial x_{i}}&=\frac{\partial\widetilde{u}}{\partial r}\cdot\frac{\partial r}{\partial x_{i}}=\widetilde{u}^{\prime}\cdot\frac{x_{i}}{r}\\ \frac{\partial^{2}\widetilde{u}}{\partial x_{i}^{2}}&=\frac{\partial}{\partial x_{i}}\left(\widetilde{u}^{\prime}\cdot\frac{x_{i}}{r}\right)=\frac{\partial}{\partial r}\left(\widetilde{u}^{\prime}\cdot\frac{x_{i}}{r}\right)\cdot\frac{\partial r}{\partial x_{i}}\\ &=\left(\widetilde{u}^{\prime\prime}\cdot\frac{x_{i}}{r}+\widetilde{u}^{\prime}\cdot\frac{r\cdot\frac{r}{x_i} - x_{i}}{r^{2}}\right)\cdot\frac{x_{i}}{r}\\ &=\widetilde{u}^{\prime\prime}\cdot\frac{x_{i}^{2}}{r^{2}}+\widetilde{u}^{\prime}\cdot\frac{r^2 - x_{i}^{2}}{r^{3}} \end{align*}

因此,

0=Δu=(i=1n2xi2)u=(i=1n2xi2)u~=u~i=1nxi2r2+u~i=1nr2xi2r3=u~+u~n1r\begin{align*} 0 &=\Delta u=\left(\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}\right)u=\left(\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}\right)\widetilde{u}\\ &=\widetilde{u}^{\prime\prime}\cdot\sum_{i=1}^{n}\frac{x_{i}^{2}}{r^{2}}+\widetilde{u}^{\prime}\cdot\sum_{i=1}^{n}\frac{r^2 - x_{i}^{2}}{r^{3}}\\ &=\widetilde{u}^{\prime\prime}+\widetilde{u}^{\prime}\cdot\frac{n-1}{r} \end{align*}

得到 u~(r)\widetilde{u}(r) 对应得常微分方程,

u~+n1ru~=0\begin{equation*} \widetilde{u}^{\prime\prime}+\frac{n-1}{r}\widetilde{u}^{\prime}=0 \end{equation*}

第四题

第四题

解:
首先,考虑二阶项系数构成的矩阵之特征值,设特征值为 λ\lambda,则有,

AλBBCλ=(Aλ)(Cλ)B2=λ2(A+C)+(ACB2)\begin{align*} \begin{vmatrix} A-\lambda&B\\ B&C-\lambda \end{vmatrix} &=(A-\lambda)(C-\lambda)-B^{2}\\ &=\lambda^{2}-(A+C)+(AC-B^{2}) \end{align*}

由韦达定理,

{λ1+λ2=A+Cλ1λ2=ACB2\begin{equation*} \begin{cases}\lambda_{1}+\lambda_{2}=A+C\\\lambda_{1}\lambda_{2}=AC-B^{2}\end{cases} \end{equation*}

上述方程的判别式为,

Δ=(A+C)24(ACB2)=(AC)2+4B20\begin{align*} \Delta&=(A+C)^{2}-4(AC-B^{2})\\ &=(A-C)^{2}+4B^{2}\geq0 \end{align*}

因此,λ1,λ2\lambda_{1},\lambda_{2} 都是实根。

情形一:两特征值全负

此时有,

{A+C<0ACB2>0\begin{equation*} \begin{cases}A+C<0\\AC-B^{2}>0\end{cases} \end{equation*}

在此情况下,上述二阶偏微分方程是椭圆型方程。

情形二:两特征值一0一负

此时有,

{A+C<0ACB2=0\begin{equation*} \begin{cases}A+C<0\\AC-B^{2}=0\end{cases} \end{equation*}

在此情况下,上述二阶偏微分方程是抛物型方程。

情形三:两特征值一正一负

此时有,

ACB2<0\begin{equation*} AC-B^{2}<0 \end{equation*}

在此情况下,上述二阶偏微分方程是双曲型方程。

情形四:以上均不是

此时类型不为以上三种。


PDE第一次作业
http://dbqdss.github.io/2024/09/29/PDE/PDE第一次作业/
作者
DBQDSS
发布于
2024年9月29日
许可协议